Central sequence C^* -algebras and absorption of the Jiang-Su algebra

(Joint work with Eberhard Kirchberg)

Mikael Rørdam rordam@math.ku.dk

Department of Mathematics University of Copenhagen

Special week on Operator algebras Research center for Operator Algebras, ECNU June 17, 2013.

Outline

1 The central sequence C^* -algebras

2 Absorbing the Jiang-Su algebra

3 A bit about the proof

Let A be a unital C^* -algebra, and let ω be a free (ultra) filter on \mathbb{N} . Consider the central sequence C^* -algebra $A_{\omega} \cap A'$, where

$$A_{\omega}=\ell^{\infty}(A)/c_{\omega}(A),\quad c_{\omega}(A)=\big\{(x_n)\in\ell^{\infty}(A)\mid \lim_{\omega}\|x_n\|=0\big\}.$$

What do we know about central sequence C^* -algebra $A_{\omega} \cap A'$?

Theorem (Kirchberg, 1994)

If A is a unital Kirchberg algebra (i.e., A is unital simple purely infinite separable and nuclear) and if ω is a free ultrafilter on \mathbb{N} , then $A_{\omega} \cap A'$ is simple and purely infinite.

In particular, $\mathcal{O}_{\infty} \hookrightarrow A_{\omega} \cap A'$, which entails that $A \cong A \otimes \mathcal{O}_{\infty}$

Fact: $A \cong A \otimes \mathcal{Z} \iff$

 \exists unital *-homomorphism $\mathcal{Z} \to A_\omega \cap A'$ for some free filter ω

Example

If A is unital and approximately divisible, then $\bigotimes_{k=1}^{\infty}(M_2 \oplus M_3)$ maps unitally into $A_{\omega} \cap A'$. Hence $\mathcal{Z} \hookrightarrow A_{\omega} \cap A'$, so $A \cong A \otimes \mathcal{Z}$

Let A be a unital C^* -algebra, and let ω be a free (ultra) filter on \mathbb{N} . Consider the central sequence C^* -algebra $A_{\omega} \cap A'$, where

$$A_{\omega} = \ell^{\infty}(A)/c_{\omega}(A), \quad c_{\omega}(A) = \big\{(x_n) \in \ell^{\infty}(A) \mid \lim_{\omega} \|x_n\| = 0\big\}.$$

What do we know about central sequence C^* -algebra $A_{\omega} \cap A'$?

Theorem (Kirchberg, 1994)

If A is a unital Kirchberg algebra (i.e., A is unital simple purely infinite separable and nuclear) and if ω is a free ultrafilter on \mathbb{N} , then $A_{\omega} \cap A'$ is simple and purely infinite.

In particular, $\mathcal{O}_{\infty} \hookrightarrow A_{\omega} \cap A'$, which entails that $A \cong A \otimes \mathcal{O}_{\infty}$.

Fact: $A \cong A \otimes \mathcal{Z} \iff$

 \exists unital *-homomorphism $\mathcal{Z} \to A_{\omega} \cap A'$ for some free filter ω .

Example

If A is unital and approximately divisible, then $\bigotimes_{k=1}^{\infty} (M_2 \oplus M_3)$ maps unitally into $A_{\omega} \cap A'$. Hence $\mathcal{Z} \hookrightarrow A_{\omega} \cap A'$, so $A \cong A \otimes \mathcal{Z}$.

Fact: If M is a II_1 von Neumann factor and if ω is a free ultrafilter, then $M^{\omega} \cap M'$ is either a II_1 von Neumann algebra or it is abelian.

If the former holds, then M is said to be a McDuff factor, and in this case $\mathcal{R} \hookrightarrow M^\omega \cap M'$ which entails that $M \cong M \bar{\otimes} \mathcal{R}$.

Theorem (Strengthened version of a theorem of Sato)

Let A be a unital separable C^* -algebra with a faithful trace τ . Let $M=\pi_{\tau}(A)''$, and let ω be a free ultrafilter on \mathbb{N} . Then the canonical map

$$A_{\omega} \cap A' \to M^{\omega} \cap M'$$

is surjective.

- ▶ In particular, if A is non-elementary, unital, simple, nuclear and stably finite, then a quotient of $A_{\omega} \cap A'$ contains a subalgebra isomorphic to \mathcal{R} .
- ullet Sato proved the theorem above under the additional assumptions that A is simple and nuclear.

Fact: If M is a II_1 von Neumann factor and if ω is a free ultrafilter, then $M^{\omega} \cap M'$ is either a II_1 von Neumann algebra or it is abelian.

If the former holds, then M is said to be a McDuff factor, and in this case $\mathcal{R} \hookrightarrow M^\omega \cap M'$ which entails that $M \cong M \bar{\otimes} \mathcal{R}$.

Theorem (Strengthened version of a theorem of Sato)

Let A be a unital separable C^* -algebra with a faithful trace τ . Let $M=\pi_{\tau}(A)''$, and let ω be a free ultrafilter on \mathbb{N} . Then the canonical map

$$A_{\omega} \cap A' \to M^{\omega} \cap M'$$

is surjective.

- ▶ In particular, if A is non-elementary, unital, simple, nuclear and stably finite, then a quotient of $A_{\omega} \cap A'$ contains a subalgebra isomorphic to \mathcal{R} .
- Sato proved the theorem above under the additional assumptions that A is simple and nuclear.

Idea of proof: The inclusion $A \to M$ induces a *-homomorphism $\Phi: A_{\omega} \to M^{\omega}$ which is *surjective* (by Kaplanski's density theorem).

Let $\pi_{\omega} \colon \ell^{\infty}(A) \to A_{\omega}$ be the quotient mapping and put $\widetilde{\Phi} = \Phi \circ \pi_{\omega} \colon \ell^{\infty}(A) \to M^{\omega}$.

Enough to show that if $b=(b_1,b_2,\dots)\in\ell^\infty(A)$ is such that $\widetilde{\Phi}(b)\in M^\omega\cap M'$, then $\exists c=(c_1,c_2,\dots)\in\ell^\infty(A)$ st $\widetilde{\Phi}(c)=\widetilde{\Phi}(b)$ and $\pi_\omega(c)\in A_\omega\cap A'$.

Put $D=C^*(A,b)\subseteq \ell^\infty(A)$ and put $J=\operatorname{Ker}(\Phi|_D)$. Let $(e^{(\kappa)})\subseteq J$ be an asymptocially central approximate unit for J. Note that $ba-ab\in J$ for all $a\in A$. Hence, for all $a\in A$:

$$0 = \lim_{k \to \infty} \| (1 - e^{(k)})(ba - ab)(1 - e^{(k)}) \|$$

=
$$\lim_{k \to \infty} \| (1 - e^{(k)})b(1 - e^{(k)})a - a(1 - e^{(k)})b(1 - e^{(k)}) \|.$$

We can therefore take $c_n = (1 - e_n^{(k_n)})b_n(1 - e_n^{(k_n)})$ for a suitable sequence (k_n) .

Idea of proof: The inclusion $A \to M$ induces a *-homomorphism $\Phi: A_{\omega} \to M^{\omega}$ which is *surjective* (by Kaplanski's density theorem).

Let $\pi_{\omega} \colon \ell^{\infty}(A) \to A_{\omega}$ be the quotient mapping and put $\widetilde{\Phi} = \Phi \circ \pi_{\omega} \colon \ell^{\infty}(A) \to M^{\omega}$.

Enough to show that if $b=(b_1,b_2,\dots)\in\ell^\infty(A)$ is such that $\widetilde{\Phi}(b)\in M^\omega\cap M'$, then $\exists c=(c_1,c_2,\dots)\in\ell^\infty(A)$ st $\widetilde{\Phi}(c)=\widetilde{\Phi}(b)$ and $\pi_\omega(c)\in A_\omega\cap A'$.

Put $D = C^*(A, b) \subseteq \ell^{\infty}(A)$ and put $J = \operatorname{Ker}(\widetilde{\Phi}|_D)$. Let $(e^{(k)}) \subseteq J$ be an asymptocially central approximate unit for J. Note that $ba - ab \in J$ for all $a \in A$. Hence, for all $a \in A$:

$$\begin{array}{lll} 0 & = & \lim_{k \to \infty} \|(1 - e^{(k)})(ba - ab)(1 - e^{(k)})\| \\ & = & \lim_{k \to \infty} \|(1 - e^{(k)})b(1 - e^{(k)})a - a(1 - e^{(k)})b(1 - e^{(k)})\|. \end{array}$$

We can therefore take $c_n = (1 - e_n^{(k_n)})b_n(1 - e_n^{(k_n)})$ for a suitable sequence (k_n) .

Example

There exist non-elementary, unital, simple, separable, nuclear (stably finite) C^* -algebras A that do not absorb the Jiang-Su algebra. E.g.:

- Villadsen's examples of simple AH-algebras with strongly perforated K_0 -groups or with stable rank > 1.
- The example of a simple unital nuclear separable C*-algebra with a finite and an infinite projection, [R], (which also provided a counterexample to the Elliott conjecture).
- Toms' refined counterexamples to the Elliott conjecture (which are AH-algebras).
- Many others!

For any of the C^* -algebras mentioned above, $\mathcal Z$ does not embed unitally into $A_{\omega} \cap A'$. For the stably finite ones, we still have a surjection $A_{\omega} \cap A' \to \mathcal R^{\omega} \cap \mathcal R'$, so $A_{\omega} \cap A'$ is not small (or abelian).

- ▶ When \exists unital *-homomorphism $\mathcal{Z} \to A_{\omega} \cap A'$?
 - Not if $A_{\omega} \cap A'$ has a character.
 - Not if $A \ncong A \otimes \mathcal{Z}$.
 - Perhaps if and only if $A_{\omega} \cap A'$ has no characters.

Proposition (Kirchberg: Abel Proceedings)

Let A and D be unital separable C^* -algebras, and let ω be a free filter on \mathbb{N} . If there is a unital *-hom $D \to A_\omega \cap A'$, then there is a unital *-hom

$$\bigotimes^{\infty} D \to A_{\omega} \cap A'$$

(where $\otimes = \otimes_{\max}$).

Corollary

If A is separable and $A_{\omega} \cap A'$ has no character, then \exists unital separable C^* -algebra D with no characters and a unital A^* -homomorphism A^* - A^*

- ▶ When \exists unital *-homomorphism $\mathcal{Z} \to A_{\omega} \cap A'$?
 - Not if $A_{\omega} \cap A'$ has a character.
 - Not if $A \ncong A \otimes \mathcal{Z}$.
 - Perhaps if and only if $A_{\omega} \cap A'$ has no characters.

Proposition (Kirchberg: Abel Proceedings)

Let A and D be unital separable C^* -algebras, and let ω be a free filter on $\mathbb N$. If there is a unital *-hom $D \to A_\omega \cap A'$, then there is a unital *-hom

$$\bigotimes^{\sim} D o A_{\omega} \cap A'$$

(where $\otimes = \otimes_{\max}$).

Corollary

If A is separable and $A_{\omega} \cap A'$ has no character, then \exists unital separable C^* -algebra D with no characters and a unital *-homomorphism $\bigotimes_{n=1}^{\infty} D \to A_{\omega} \cap A'$.

Theorem (Dadarlat–Toms)

Let D be a unital C^* -algebra. If $\bigotimes_{k=1}^{\infty} D$ contains a unital subhomogeneous C^* -algebra without characters, then $\mathcal{Z} \hookrightarrow \bigotimes_{k=1}^{\infty} D$.

► Consider the "dimension-drop" *C**-algebra:

$$I(2,3) := \{ f : [0,1] \to M_2 \otimes M_3 \mid f(0) \in M_2 \otimes \mathbb{C}, \ f(1) \in \mathbb{C} \otimes M_3 \}.$$

$\mathsf{Corollary}$

Let A be a separable unital C*-algebra. TFAE:

- $A \cong A \otimes \mathcal{Z}$,
- \exists unital *-homomorphism $\mathcal{Z} \to A_{\omega} \cap A'$,
- $A_{\omega} \cap A'$ contains unital subhomogeneous C^* -algebra without character,
- \exists unital *-homomorphism $I(2,3) \rightarrow A_{\omega} \cap A'$.

Theorem (Dadarlat-Toms)

Let D be a unital C^* -algebra. If $\bigotimes_{k=1}^{\infty} D$ contains a unital subhomogeneous C^* -algebra without characters, then $\mathcal{Z} \hookrightarrow \bigotimes_{k=1}^{\infty} D$.

▶ Consider the "dimension-drop" *C**-algebra:

$$I(2,3):=\big\{f\colon [0,1]\to M_2\otimes M_3\mid f(0)\in M_2\otimes \mathbb{C},\ f(1)\in \mathbb{C}\otimes M_3\big\}.$$

Corollary

Let A be a separable unital C^* -algebra. TFAE:

- $A \cong A \otimes \mathcal{Z}$,
- \exists unital *-homomorphism $\mathcal{Z} \to A_{\omega} \cap A'$,
- $A_{\omega} \cap A'$ contains unital subhomogeneous C^* -algebra without character,
- \exists unital *-homomorphism $I(2,3) \rightarrow A_{\omega} \cap A'$.

Proposition (Perera–R, 2004)

Let A be a unital C^* -algebra of real rank zero. TFAE:

- A has no characters,
- 2 \exists unital *-homomorphism $M_2 \oplus M_3 \to A$,
- **3** \exists unital *-homomorphism $I(2,3) \rightarrow A$,
 - For all unital C^* -algebras: $(2) \Rightarrow (3) \Rightarrow (1)$.
 - (1) and (2) are not equivalent for non-real rank zero C^* -algebras, e.g., $A = C_r^*(\mathbb{F}_2)$.
 - (1) and (3) are not equivalent in the non-real rank zero case. There are even simple infinite dimensional unital C*-algebras that fail (3).
 - It is not known if (1) and (3) are equivalent for unital C^* -algebras of the form $A = \bigotimes_{n=1}^{\infty} D$.

Proposition (Perera-R, 2004)

Let A be a unital C^* -algebra of real rank zero. TFAE:

- A has no characters,
- 2 \exists unital *-homomorphism $M_2 \oplus M_3 \rightarrow A$,
- **3** \exists unital *-homomorphism $I(2,3) \rightarrow A$,
 - For all unital C^* -algebras: $(2) \Rightarrow (3) \Rightarrow (1)$.
 - (1) and (2) are not equivalent for non-real rank zero C^* -algebras, e.g., $A = C_r^*(\mathbb{F}_2)$.
 - (1) and (3) are not equivalent in the non-real rank zero case. There are even simple infinite dimensional unital C*-algebras that fail (3).
 - It is not known if (1) and (3) are equivalent for unital C^* -algebras of the form $A = \bigotimes_{n=1}^{\infty} D$.

Proposition: (R–Winter) \exists unital *-hom $I(2,3) \to A_{\omega} \cap A'$ (and hence $A \cong A \otimes \mathcal{Z}$) if $\exists a,b \in A_{\omega} \cap A'$ positive contractions st

$$a \sim b$$
, $a \perp b$, $1-a-b \lesssim (a-\varepsilon)_+$,

i.e., if there exists *-hom $CM_2 o A_\omega \cap A'$ with "large image".

Question

Let be A a unital separable C^* -algebra.

$$A_{\omega} \cap A'$$
 has no characters $\stackrel{??}{\Longleftrightarrow} \exists$ unital *-hom $\mathcal{Z} \to A_{\omega} \cap A'$
 $\Longleftrightarrow A \cong A \otimes \mathcal{Z}$

Question (Dadarlat-Toms)

Does \mathcal{Z} embed unitally into $\bigotimes_{n=1}^{\infty} D$ whenever D is a unital C^* -algebra without characters?

► The two questions above are equivalent!

Proposition: (R–Winter) \exists unital *-hom $I(2,3) \to A_{\omega} \cap A'$ (and hence $A \cong A \otimes \mathcal{Z}$) if $\exists a,b \in A_{\omega} \cap A'$ positive contractions st

$$a \sim b$$
, $a \perp b$, $1-a-b \lesssim (a-\varepsilon)_+$,

i.e., if there exists *-hom $CM_2 o A_\omega \cap A'$ with "large image".

Question

Let be A a unital separable C^* -algebra.

$$A_{\omega} \cap A'$$
 has no characters $\stackrel{??}{\Longleftrightarrow} \exists$ unital *-hom $\mathcal{Z} \to A_{\omega} \cap A'$
 $\iff A \cong A \otimes \mathcal{Z}$

Question (Dadarlat-Toms)

Does \mathcal{Z} embed unitally into $\bigotimes_{n=1}^{\infty} D$ whenever D is a unital C^* -algebra without characters?

► The two questions above are equivalent!

Proposition: (R–Winter) \exists unital *-hom $I(2,3) \to A_{\omega} \cap A'$ (and hence $A \cong A \otimes \mathcal{Z}$) if $\exists a,b \in A_{\omega} \cap A'$ positive contractions st

$$a \sim b$$
, $a \perp b$, $1-a-b \lesssim (a-\varepsilon)_+$,

i.e., if there exists *-hom $CM_2 o A_\omega \cap A'$ with "large image".

Question

Let be A a unital separable C*-algebra.

$$A_{\omega} \cap A'$$
 has no characters $\stackrel{??}{\Longleftrightarrow} \exists$ unital *-hom $\mathcal{Z} \to A_{\omega} \cap A'$
 $\iff A \cong A \otimes \mathcal{Z}$

Question (Dadarlat-Toms)

Does \mathcal{Z} embed unitally into $\bigotimes_{n=1}^{\infty} D$ whenever D is a unital C^* -algebra without characters?

▶ The two questions above are equivalent!

Definition

A unital C^* -algebra is said to have the *splitting property* if there are positive full elements $a, b \in A$ with $a \perp b$.

Note: A has the splitting property \implies A has no characters.

The opposite implication is false in general, but it may be true if $A = \bigotimes_{n=1}^{\infty} D$ for some unital D.

Lemma

If $A_{\omega} \cap A'$ has the splitting property, then there is a full *-homomorphism $CM_2 \to A_{\omega} \cap A'$.

Definition

A unital C^* -algebra is said to have the *splitting property* if there are positive full elements $a, b \in A$ with $a \perp b$.

Note: A has the splitting property $\implies A$ has no characters.

The opposite implication is false in general, but it may be true if $A = \bigotimes_{n=1}^{\infty} D$ for some unital D.

Lemma

If $A_{\omega} \cap A'$ has the splitting property, then there is a full *-homomorphism $CM_2 \to A_{\omega} \cap A'$.

Proposition

Let A be a unital separable C^* -algebra and let ω be a free ultrafilter on \mathbb{N} .

- (a) If $A_{\omega} \cap A'$ has no character, then A has the strong Corona Factorization Property.
- (b) If $A_{\omega} \cap A'$ has the splitting property, then $\exists N_k \in \mathbb{N}$ st

 - 2 Let $x, y \in Cu(A)$. If $N_k x \le ky$ for some $k \ge 1$, then $x \le y$.
- (c) If $A_{\omega} \cap A'$ has the splitting property and A is simple, then A is either stably finite or purely infinite.

Corollary

There exist non-elementary, unital, simple, separable, nuclear C^* -algebras A st $A_{\omega} \cap A'$ has a character (and, at the same time, a sub-quotient $\cong \mathcal{R}$).

Outline

1 The central sequence C*-algebras

2 Absorbing the Jiang-Su algebra

3 A bit about the proof

The Elliott classification conjecture for simple, separable, nuclear C^* -algebras does not hold without further assumptions. Good candidates for an additional assumption are the following:

Conjecture (Toms-Winter)

The following are equivalent for every separable simple nuclear (unital) C^* -algebra:

- (a) A has finite nuclear dimension.
- (b) A has strict comparison of positive elements (or, equivalently, Cu(A) is almost unperforated).
- (c) $A \cong A \otimes \mathcal{Z}$.
 - Winter proved (a) \Rightarrow (c).
 - (c) \Rightarrow (b) holds for all C^* -algebras A, [R].
 - (c) \Rightarrow (a): listen to Sato's talk!

The Elliott classification conjecture for simple, separable, nuclear C^* -algebras does not hold without further assumptions. Good candidates for an additional assumption are the following:

Conjecture (Toms-Winter)

The following are equivalent for every separable simple nuclear (unital) C^* -algebra:

- (a) A has finite nuclear dimension.
- (b) A has strict comparison of positive elements (or, equivalently, Cu(A) is almost unperforated).
- (c) $A \cong A \otimes \mathcal{Z}$.
 - Winter proved (a) \Rightarrow (c).
 - (c) \Rightarrow (b) holds for all C^* -algebras A, [R].
 - (c) \Rightarrow (a): listen to Sato's talk!

In 2011, the following remarkable result was proved:

Theorem (Matui–Sato)

Let A be a unital, separable, simple, non-elementary, stably finite, nuclear C^* -algebra, and suppose that $\partial_e T(A)$ is finite. Then the following are equivalent:

- (c) $A \cong A \otimes \mathcal{Z}$,
- (b) A has strict comparison of positive elements,
- (d) Every cp map A → A can be excised in small central sequences,
- (e) A has property (SI).

Note that if A is not stably finite, then $T(A) = \emptyset$ and (b) implies that A is purely infinite. Hence A is a Kirchberg algebra and

 $A \cong A \otimes \mathcal{O}_{\infty} \cong A \otimes \mathcal{Z}$.

It would be desirable to remove the condition that $\partial_e T(A)$ is finite!

In 2011, the following remarkable result was proved:

Theorem (Matui–Sato)

Let A be a unital, separable, simple, non-elementary, stably finite, nuclear C^* -algebra, and suppose that $\partial_e T(A)$ is finite. Then the following are equivalent:

- (c) $A \cong A \otimes \mathcal{Z}$,
- (b) A has strict comparison of positive elements,
- (d) Every cp map A → A can be excised in small central sequences,
- (e) A has property (SI).

We get back to the properties mentioned in (d) and (e).

Note that if A is not stably finite, then $T(A) = \emptyset$ and (b) implies that A is purely infinite. Hence A is a Kirchberg algebra and $A \cong A \otimes \mathcal{O}_{\infty} \cong A \otimes \mathcal{Z}$.

It would be desirable to remove the condition that $\partial_e T(A)$ is finite!

A unital C^* -algebra with $T(A) \neq \emptyset$. Define

$$\|a\|_{2, au} = au(a^*a)^{1/2}, \qquad \|a\|_2 = \sup_{ au \in T(A)} \|a\|_{2, au}, \quad a \in A.$$

Define $\|\cdot\|_2$ on A_{ω} by

$$\|\pi_{\omega}(a_1, a_2, a_3, \dots)\|_2 = \lim_{\omega} \|a_n\|_2,$$

where $\pi_{\omega} \colon \ell^{\infty}(A) \to A_{\omega}$ is the quotient map. Set

$$J_A = \{x \in A_\omega : \|a\|_2 = 0\} \ \triangleleft \ A_\omega.$$

Definition (Matui-Sato, reformulated)

A unital simple C^* -algebra A is said to have *property (SI)* if for all positive contractions $e, f \in A_\omega \cap A'$ such that

$$e \in J_A, \qquad \sup_k \|1 - f^k\|_2 < 1,$$

there is $s \in A_{\omega} \cap A'$ with fs = s and $s^*s = e$.

Proposition

Let A be a separable, simple, unital, stably finite C^* -algebra with property (SI). TFAE:

- \bullet $A \cong A \otimes \mathcal{Z}$,
- 2 \exists unital *-homomorphism $\mathcal{R} \to (A_{\omega} \cap A')/J_A$.
- **3** ∃ unital *-homomorphism $M_2 \rightarrow (A_\omega \cap A')/J_A$.

- ② $\partial_e T(A)$ is weak * closed in T(A) (i.e., T(A) is a Bauer

Proposition

Let A be a separable, simple, unital, stably finite C^* -algebra with property (SI). TFAE:

- $\bullet A\cong A\otimes \mathcal{Z},$
- **2** \exists unital *-homomorphism $\mathcal{R} \to (A_{\omega} \cap A')/J_A$.
- **3** ∃ unital *-homomorphism $M_2 \rightarrow (A_\omega \cap A')/J_A$.
- **④** \exists unital *-homomorphism $I(2,3) \rightarrow A_{\omega} \cap A'$.

Proposition

If A is a non-elementary, unital, simple, separable, stably finite C^* -algebra st

- **1** $\pi_{\tau}(A)''$ is McDuff factor for all $\tau \in \partial_{e}T(A)$.
- ② $\partial_e T(A)$ is weak * closed in T(A) (i.e., T(A) is a Bauer simplex).
- 3 $\partial_e T(A)$ has finite covering dimension.

Then there is a unital *-homomorphism $M_2 \to (A_{\iota\iota}, \cap A')/J_A$.

Results similar to the ones above and below have been obtained independently by A. Toms, S. White and W. Winter and by Y. Sato.

Absorbing the Jiang-Su algebra

$\mathsf{Theorem}$

Let A be a non-elementary, unital, simple, separable, stably finite C^* -algebra st

- **1** $\pi_{\tau}(A)''$ is McDuff factor for all $\tau \in \partial_e T(A)$.
- ② $\partial_e T(A)$ is weak * closed in T(A).
- **3** $\partial_e T(A)$ has finite covering dimension.
- A has property (SI)

Then $A \cong A \otimes \mathcal{Z}$.

- Note that $A \cong A \otimes \mathcal{Z}$ implies (1), but not (2) and (3).
- It is not known if $A \cong A \otimes \mathcal{Z}$ implies (4).

Results similar to the ones above and below have been obtained independently by A. Toms, S. White and W. Winter and by Y. Sato.

$\mathsf{Theorem}$

Let A be a non-elementary, unital, simple, separable, stably finite C^* -algebra st

- **1** $\pi_{\tau}(A)''$ is McDuff factor for all $\tau \in \partial_e T(A)$.
- ② $\partial_e T(A)$ is weak * closed in T(A).
- **3** $\partial_e T(A)$ has finite covering dimension.
- A has property (SI)

Then $A \cong A \otimes \mathcal{Z}$.

- Note that $A \cong A \otimes \mathcal{Z}$ implies (1), but not (2) and (3).
- It is not known if $A \cong A \otimes \mathcal{Z}$ implies (4).

Definition (Matui–Sato, reformulated)

A cp map $\varphi \colon A \to A \subseteq A_{\omega}$ can be excised in small central sequences if for all positive contractions $e, f \in A_{\omega} \cap A'$ with

$$e \in J_A, \qquad \sup_k \|1 - f^k\|_2 < 1,$$

there exists $s \in A_{\omega}$ st

$$fs = s,$$
 $s^*as = \varphi(a)e,$ $a \in A.$

Proposition (Matui-Sato

Let A be a unital simple C*-algebra

- If $id_A : A \rightarrow A$ can be excised in small central sequences, then A has property (SI).
- ② If A is simple, separable, unital and nuclear, and if A has strict comparison, then id_A can be excised in small central sequences.

Definition (Matui–Sato, reformulated)

A cp map $\varphi \colon A \to A \subseteq A_{\omega}$ can be excised in small central sequences if for all positive contractions $e, f \in A_{\omega} \cap A'$ with

$$e \in J_A, \qquad \sup_k \|1 - f^k\|_2 < 1,$$

there exists $s \in A_{\omega}$ st

$$fs = s$$
, $s^*as = \varphi(a)e$, $a \in A$.

Proposition (Matui-Sato)

Let A be a unital simple C*-algebra.

- If $id_A : A \rightarrow A$ can be excised in small central sequences, then A has property (SI).
- ② If A is simple, separable, unital and nuclear, and if A has strict comparison, then id_A can be excised in small central sequences.

Definition

Let A be a unital, simple, stably finite C^* -algebra. Then A has local weak comparison if there exists a constant $\gamma = \gamma(A)$ st for all positive element $a, b \in A$:

$$\gamma \cdot \sup_{ au \in QT(A)} d_{ au}(a) < \inf_{ au \in QT(A)} d_{ au}(b) \implies a \precsim b.$$

- ▶ A has strict comparison \iff $\mathrm{Cu}(A)$ is almost unperforated \implies $\mathrm{Cu}(A)$ has strong tracial m-comparison for some $m < \infty$ (in the sense of Winter) \implies A has local weak comparison.
- ▶ A is (m, \bar{m}) -pure (in the sense of Winter) for some $m, \bar{m} \in \mathbb{N}$ $\implies A$ has local weak comparison.

Theorem (Winter)

If A is simple, separable, unital with locally finite nuclear dimension, and if A is (m, \bar{m}) -pure for some $m, \bar{m} \in \mathbb{N}$, then $A \cong A \otimes \mathcal{Z}$.

Definition

Let A be a unital, simple, stably finite C^* -algebra. Then A has local weak comparison if there exists a constant $\gamma = \gamma(A)$ st for all positive element $a, b \in A$:

$$\gamma \cdot \sup_{ au \in QT(A)} d_{ au}(a) < \inf_{ au \in QT(A)} d_{ au}(b) \implies a \precsim b.$$

- ▶ A has strict comparison \iff $\mathrm{Cu}(A)$ is almost unperforated \implies $\mathrm{Cu}(A)$ has strong tracial m-comparison for some $m < \infty$ (in the sense of Winter) \implies A has local weak comparison.
- ▶ A is (m, \bar{m}) -pure (in the sense of Winter) for some $m, \bar{m} \in \mathbb{N}$ \implies A has local weak comparison.

Theorem (Winter)

If A is simple, separable, unital with locally finite nuclear dimension, and if A is (m, \bar{m}) -pure for some $m, \bar{m} \in \mathbb{N}$, then $A \cong A \otimes \mathcal{Z}$.

Proposition

Let A be a unital, simple, stably finite C^* -algebra.

- If A has local weak comparison, then every nuclear cp $\varphi \colon A \to A$ can be excised in small central sequences.
- If A is nuclear and has local weak comparison, then A has property (SI).

Corollary

Let A be a non-elementary, stably finite, simple, separable, unital and nuclear C^* -algebra. Suppose that $\partial_e T(A)$ is closed in T(A) and that $\partial_e T(A)$ has finite covering dimension. Then the following are equivalent:

- (b') A has local weak comparison,
- (b) A has strict comparison of positive elements,
- (c) $A \cong A \otimes \mathcal{Z}$.

Proposition

Let A be a unital, simple, stably finite C^* -algebra.

- If A has local weak comparison, then every nuclear cp $\varphi \colon A \to A$ can be excised in small central sequences.
- If A is nuclear and has local weak comparison, then A has property (SI).

Corollary

Let A be a non-elementary, stably finite, simple, separable, unital and nuclear C^* -algebra. Suppose that $\partial_e T(A)$ is closed in T(A) and that $\partial_e T(A)$ has finite covering dimension. Then the following are equivalent:

- (b') A has local weak comparison,
- (b) A has strict comparison of positive elements,
- (c) $A \cong A \otimes \mathcal{Z}$.

Corollary

Let A be a non-elementary, stably finite, simple, separable, unital and nuclear C^* -algebra. Suppose that $\partial_e T(A)$ is closed in T(A) and that $\partial_e T(A)$ has finite covering dimension. Then the following are equivalent:

- (b') A has local weak comparison,
- (b) A has strict comparison of positive elements,
- (c) $A \cong A \otimes \mathcal{Z}$.

Question

Are (b'), (b) and (c) above equivalent for all non-elementary, simple, separable, unital and nuclear C*-algebra?

Are (b) and (b') above equivalent for all separable, unital and nuclear C^* -algebra?

Outline

■ The central sequence C*-algebras

2 Absorbing the Jiang-Su algebra

3 A bit about the proof

A bit about the proof of (1) of:

Proposition

Let A be a unital, simple, stably finite C^* -algebra.

- If A has local weak comparison, then every nuclear cp $\varphi \colon A \to A$ can be excised in small central sequences.
- (Matui–Sato) If id_A can be excised in small central sequences, then A has property (SI).

Definition (Matui–Sato, reformulated)

A cp map $\varphi: A \to A \subseteq A_{\omega}$ can be excised in small central sequences if for all positive contractions $e, f \in A_{\omega} \cap A'$ with

$$e \in J_A$$
, $\sup_{k} \|1 - f^k\|_2 < 1$,

there exists $s \in A_{\omega}$ st

$$fs = s$$
, $s^*as = \varphi(a)e$, $a \in A$.

A bit about the proof of (1) of:

Proposition

Let A be a unital, simple, stably finite C^* -algebra.

- If A has local weak comparison, then every nuclear cp $\varphi \colon A \to A$ can be excised in small central sequences.
- (Matui–Sato) If id_A can be excised in small central sequences, then A has property (SI).

Definition (Matui–Sato, reformulated)

A cp map $\varphi \colon A \to A \subseteq A_{\omega}$ can be excised in small central sequences if for all positive contractions $e, f \in A_{\omega} \cap A'$ with

$$e \in J_A, \qquad \sup_k \|1 - f^k\|_2 < 1,$$

there exists $s \in A_{\omega}$ st

$$fs = s$$
, $s^*as = \varphi(a)e$, $a \in A$.

Definition

Let $A \subseteq B$. A cp map $\varphi \colon A \to B$ is one-step-elementary if there exist a pure state λ and $c_1, \ldots, c_n, d_1, \ldots, d_n \in B$ st

$$\varphi(a) = \sum_{j,k=1}^{n} \lambda(d_j^* a d_k) c_j^* c_k.$$

Lemma (cf. Matui–Sato, Prop. 2.2)

If A is a unital simple separable C^* -algebra with QT(A) = T(A) and with local weak comparison, then every one-step-elementary cp map $\varphi \colon A \to A$ can be excised in small central sequences.

Definition

Let $A \subseteq B$. A cp map $\varphi \colon A \to B$ is one-step-elementary if there exist a pure state λ and $c_1, \ldots, c_n, d_1, \ldots, d_n \in B$ st

$$\varphi(a) = \sum_{j,k=1}^{n} \lambda(d_j^* a d_k) c_j^* c_k.$$

Lemma (cf. Matui–Sato, Prop. 2.2)

If A is a unital simple separable C^* -algebra with QT(A) = T(A) and with local weak comparison, then every one-step-elementary cp map $\varphi \colon A \to A$ can be excised in small central sequences.

Proof of Lemma

Let

$$\varphi(a) = \sum_{i,k=1}^{n} \lambda(d_j^* a d_k) c_j^* c_k,$$

be a one-step-elementary cp map. Take $h \in A^+$ with ||h|| = 1 that excises the state λ as follows:

$$\|h^{1/2}(x-\lambda(x)\cdot 1)h^{1/2}\|<rac{1}{2}\Big(\sum_{j=1}^{n}\|c_{j}\|\Big)^{-2}arepsilon$$
 for all $x\in\{d_{i}^{*}ad_{i}\mid 1\leq i,j\leq n,\ a\in F\}.$

Let $t \in A_{\omega}$ be such that $t^*ht = e$, ft = t, and $||t||^2 \le 2$. Put

$$s=\sum_{i=1}^n d_i h^{1/2} t c_i.$$

Then fs = s and

$$\|s^*as - \varphi(a)e\| = \left\| \sum_{i,k=1}^n c_j^* t^* h^{1/2} (d_j^*ad_k - \lambda(d_j^*ad_k)) h^{1/2} tc_k \right\| < \varepsilon.$$

Proof of Lemma

Let

$$\varphi(a) = \sum_{i,k=1}^{n} \lambda(d_j^* a d_k) c_j^* c_k,$$

be a one-step-elementary cp map. Take $h \in A^+$ with ||h|| = 1 that excises the state λ as follows:

$$\|h^{1/2}(x-\lambda(x)\cdot 1)h^{1/2}\| < \frac{1}{2} \Big(\sum_{j=1}^{n} \|c_j\|\Big)^{-2} \varepsilon$$

for all $x \in \{d_j^* a d_i \mid 1 \le i, j \le n, a \in F\}$.

Let $t \in A_{\omega}$ be such that $t^*ht = e$, ft = t, and $||t||^2 \le 2$. Put

$$s=\sum_{i=1}^n d_i h^{1/2} t c_i.$$

Then fs = s and

$$\|s^*as - \varphi(a)e\| = \left\| \sum_{i,k=1}^n c_j^* t^* h^{1/2} \left(d_j^*ad_k - \lambda(d_j^*ad_k) \right) h^{1/2} tc_k \right\| < \varepsilon.$$

Proof of Lemma

Let

$$\varphi(a) = \sum_{i,k=1}^{n} \lambda(d_j^* a d_k) c_j^* c_k,$$

be a one-step-elementary cp map. Take $h \in A^+$ with ||h|| = 1 that excises the state λ as follows:

$$\|h^{1/2}(x-\lambda(x)\cdot 1)h^{1/2}\|<rac{1}{2}\Big(\sum_{j=1}^n\|c_j\|\Big)^{-2}arepsilon$$
 for all $x\in\{d_i^*ad_i\mid 1\leq i,j\leq n,\ a\in F\}.$

for all $x \in \{u_j | au_i \mid 1 \leq i, j \leq ii, a \in F\}$.

Let $t \in A_{\omega}$ be such that $t^*ht = e$, ft = t, and $||t||^2 \le 2$. Put

$$s=\sum_{i=1}^n d_i h^{1/2} t c_i.$$

Then fs = s and

$$\|s^*as - \varphi(a)e\| = \left\| \sum_{i,j=1}^n c_j^*t^*h^{1/2} \left(d_j^*ad_k - \lambda(d_j^*ad_k) \right) h^{1/2}tc_k \right\| < \varepsilon.$$

To prove the claim we are after: If A is unital, simple, stably finite and has local weak comparison, then every nuclear cp $\varphi \colon A \to A$ can be excised in small central sequences we need now only prove that:

Proposition

Let A be a separable (simple) non-elementary C^* -algebra. Then every nuclear cp map $\varphi \colon A \to A$ is the point-norm limit of a sequence of one-step-elementary cp maps $A \to A$.

Definition

Let $A \subseteq B$. A cp map $\varphi \colon A \to B$ is one-step-elementary if there exist a pure state λ and $c_1, \ldots, c_n, d_1, \ldots, d_n \in B$ st

$$\varphi(a) = \sum_{j,k=1}^{n} \lambda(d_j^* a d_k) c_j^* c_k.$$

Proposition

Let A be a separable (simple) non-elementary C^* -algebra. Then every nuclear cp map $\varphi \colon A \to A$ is the point-norm limit of a sequence of one-step-elementary cp maps $A \to A$.

Proof.

- $T(y) = C^*yC$ for some $C \in M_{n^2,1}(A)$.
- $S:=E\circ U$ can be approximated by maps $S'\colon A\to M_{n^2}$ of the form $S'(a)=\left[\lambda(d_j^*ad_k)\right]_{1\leq i,j\leq n^2},\quad a\in A.$
- ▶ $T \circ S'$: $A \to A$ is one-step-elementary, and $T \circ S' \approx \varphi$.